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SUMMARY

The onset of electrohydrodynamic motion associated with the imposition of an electric field

across a thin layer of liquid has been investigated for the case in which the electrical

conductivity varies linearly over the depth of the layer. The variation of the conductivity is

due to concentration gradients in the charge-carrying solutes and its spatio-temporal evolution

is represented by a convective-diffusion equation. When the viscous relaxation time is long

compared to the time for charge relaxation, the analysis reveals that the neutral stability

curves for the layer can be characterized by three dimensionless parameters:

2
Rae =- d_EoACr/laK_ff _o, an electrical Rayleigh number; Ao'/o" 0 , the relative conductivity

increment; and _, the transverse wave number of the disturbance. Here d is the thickness,

is the dielectric constant, and // is the viscosity of the layer, E 0 is the applied field

strength at the lower conductivity boundary, and Ke_ is an effective diffusivity associated

with the Brownian motion of the charge-carrying solutes. With viscous-stress-free

boundaries, at which the electrical conductivity and the normal component of the electric field

are prescribed, the critical Ra_ is 1.504 x 104 at a critical transverse wave number of 1.98

when Ao'/o- 0 is 10. As Ao'/o" 0 increases, the critical Ra e increases and shifts to shorter

wavelength disturbances; the critical imposed field strength, however, passes through a

minimum because the lower-conductivity boundary exerts a considerable stabilizing influence

in the presence of steep conductivity gradients. Similar trends were obtained for liquid layers

with rigid boundaries.
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CHAPTER l : BACKGROUND AND MOTIVATION

Background

Developments in the area of biotechnology have created the need to isolate

and purify large quantities of biological materials. A common (analytical)

technique used to purify small quantities of biomaterials is electrophoresis.

Electrophoresis is the single most useful technique for the analysis and
separation of proteins and nucleic acids. Its usefulness is based on its high
resolution and applicability to a broad range of entities, from simple ions to
living cells. It is also an inherently gentle technique, without deleterious
effects on such delicate biological structures as organelles, living cells or intact
chromosomes [ 1].

Electrophoresis is based on the principle that most biological materials in

an aqueous solution are electrically charged (due to ionization) and,

therefore, move under the influence of an external electric field.

Biological particulates and solutes migrate at a rate that is dependent on

such things as their electrical charge, their size and shape, and the

properties of the solution in which they are immersed. Biomaterials for

which electrophoresis may be employed include macro-ions, complex

polyelectrolytes, and colloidal particles and living cells. Analytic

electrophoretic separations are carried out in four classical modes: moving

boundary electrophoresis (MBE), zone electrophoresis (ZE),

isotachophoresis (ITP), and isoelectric focusing (IEF) [2].

With MBE, ZE and ITP, isolation and separation of species is based

on differences in the electrophoretic mobility of the components--that is,

on the rate of migration of the species in solution under the influence of an
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external electric field. In IEF, on the other hand, the separation is based

on differences in the isoelectric points of components [3]. IEF was

developed to fractionate amphoteric species, molecules that act either as

acids or as bases depending on the local pH of the solution. Amphoteric

species typically contain both carboxyl and amine groups, so IEF is used on

mixtures of peptides and/or proteins.

IEF depends on the formation of a stable pH gradient along which

the components migrate until reaching their respective isoelectric points

(pI). The pI of a charged species is the pH at which the net surface charge

is nil [2]. An externally-applied electric field acts on the charged

component and displaces it toward the region of isoelectric pH. Any

movement away from this point in the pH gradient results in the ionization

of the species, which causes the species to migrate back to its pI. Thus

steady-state is achieved.

Though IEF is a technique tailored for the separation and

characterization of amphoteric materials, when carried out in free solution,

its effectiveness is diminished by fluid motion that disrupts the pH gradient.

Experiments were conducted at The University of Arizona Center for

Separation Science (CSS) to examine the causes of convection in IEF. The

goal of The University of Arizona work was to develop ways to suppress

the deleterious effects of convection so that free-solution IEF could be

scaled-up to the preparative level, permitting large quantities of peptides

and proteins to be processed. The CSS experiments showed that, owing to

concentration gradients, buoyancy-driven convection occurred when the

solutes to be separated were localized in considerable quantity--a problem



3

termed zone over-loading. Sedimentation occurred if the biological

particulates were too large. Furthermore, imposition of an electric field

caused joule heating in the electrolyte and a radial temperature gradient

developed, causing natural convection. Joule heating limited the cross-

sectional area of the device in which a quiescent IEF separation could be

carried out to that of a capillary. Obviously such device-size limitations

meant that free-solution IEF could not be done on a preparative scale

unless measures were taken to either control or circumvent the problems

associated with natural convection.

Subsequent investigations of IEF by the CSS (under the auspices of

NASA) made use of microgravity conditions to suppress buoyancy-driven

flow. The microgravity experiments uncovered still another form of

convection that disrupted the focusing process. It was postulated that the

convection observed in the microgravity experiments was due to

electroosmotic and electrohydrodynamic effects. These electrically-driven

flows, though present in the terrestrial experiments, were masked by

gravitational effects.

Electroosmosis arises as a result of the electrical charge present on

the surfaces of the IEF chamber. Charge on the glass vessel walls interacts

with the ions in solution, and this causes a diffuse layer of charge to

accumulate immediately adjacent to the chamber walls. The externally-

applied electric field acts on the accumulated charge, setting the electrolyte

in motion. Electrohydrodynamic effects are caused by local deviations

from electroneutrality within the volume of the solution. Free volume

charge accumulates due to conductivity gradients that develop during IEF.
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The presence of conductivity gradients is a characteristic feature of IEF

and can be understood qualitatively by recognizing that zones in which

different species concentrate will conduct current at different rates. As

shown in Fig. 1, quantitative descriptions of the conductivity profile in an

IEF chamber are available

developed at the CSS.

One clear implication

through the use of a simulation program

of the CSS experiments is that even if

buoyancy-driven convection can be eliminated--either by use of space-

based platforms, or by innovative instrument design--free-solution IEF

cannot be done on the preparative scale unless electrically-driven

convection is also controlled. A more subtle implication of the CSS

experiments is that producing quiescent solutions for preparative-scale IEF

may be inherently problematic. Indeed preparative-scale IEF instruments

developed at the CSS make use of forced convection to over-ride natural

and electrically-driven convection; that is, preparative-scale IEF was shown

to be quite feasible if the focusing process was carried out in solutions that

were made to flow by design rather than by deleterious effects.

As noted, steep electrical conductivity gradients develop along an

IEF chamber as the focusing process proceeds. Detailed analysis of the

flight data suggests that such conductivity gradients are the primary cause

of the undesirable convection observed in the space experiments. A

question that ought to be addressed, then, is the following: Suppose that a

perfectly quiescent solution can be produced for the initial stages of an IEF

experiment. As the conductivity gradients in the solution continue to

sharpen, will the solution remain quiescent? It is the purpose here to
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Table 1

Computer Simulation

6

General Values

Column length

Segmentation

Current density

1 cm

100 segments/cm

0.001 A/cm 2

pKa and Mobility Values

Component pKal pKa2

Mobility x 10 4

[cm2/Vs]

Glutamic acid

Histidine

Arginine

H30 +

OH-

2.16

6.02

9.04

4.29

9.17

12.48

2.97

2.85

2.26

36.27

19.87



examine this very question by investigating the onset of

electrohydrodynamic motion associated with sharp conductivity gradients.

For the balance of this chapter, the results of the CSS space-flight

experiments will be discussed, beginning with a summary of how an IEF

experiment proceeds. Next, the flight results will be recounted and,

thereafter, results from computer simulations of the flight experiments will

be presented. Having thus established a feel for the physico-chemical

process involved in IEF, we then proceed to Chapter 2, in which an

analysis of the onset of electrohydrodynamic motion is performed. Note

that data and figures pertaining to the IEF space flight experiments have

been reproduced from articles and technical reports written at the CSS [4].

Analysis of Space Flight Experiments

Summary Description of IEF

The general mechanism of IEF may be described with the help of Fig. 2,

where the separation mechanism for a three component mixture is shown.

The most basic species of the mixture is component A, the most acidic is

component C, and component B has an intermediate pI.

Two separate phases may be identified during the process: a

separation phase and a stabilizing phase. In the first phase, components in

solution distribute in zones along the capillary separation length according

to their pIs. In the second phase, the system stabilizes and reaches steady-

state.

During the separation phase, two distinct transient stages are seen.

Fig. 2a depicts the initial distribution of components in the separation
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capillary, before any external electric field is applied; note the components

are distributed evenly. When the potential is applied (Fig. 2b), two moving

boundaries are formed near each electrode. An a boundary appears

between pure-component and mixed-component zones. Faster moving ]3

boundaries appear between mixed component zones. The arrows beneath

the boundaries indicate the direction of motion of the species; the length of

the arrow specifies the relative speed of boundary movement. Thus, A and

C are the fastest moving components, and they move toward opposite

electrodes. In Fig. 2c, the faster 13 boundaries meet, and the original three

component mixture has vanished. A pure B component zone then appears

(Fig. 2d) and again there are four moving boundaries. The outer (a)

boundaries migrate inward, reflecting motion of component B toward its

pI. The inner (_,) boundaries move toward the electrodes, indicating that

components A and C tend to focus at the electrodes. As a and _,

boundaries meet, a three zone solution forms, with each zone comprised of

a pure component (Fig. 2e). In this stage, 5 boundaries form and migrate

slowly toward the electrodes. This marks the end of the separation phase

and the beginning of the stabilizing stage. During the interval between

stage (e) and (f), the steady-state composition distribution is slowly

approached. The stabilizing phase is characteristically a much slower

process that the separation phase; typically the same time is required to pass

from stage (a) to (e) as is then required to go from stage (e) to (f) [3].
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Flight Experiments

IEF experiment were performed in microgravity conditions during two

NASA missions: STS-11 and STS-26.

The first space experiment was aimed at exploring the influence of

electroosmosis on IEF. Electroosmotic effects were studied by applying an

anti-electroosmosis coating on the inside of the chamber walls, and by

segmenting the separation chambers so as to interrupt flow along the walls.

IEF chambers were built from segments of glass conduit, which were

attached end to end in three ways: (1), as a simple series of cylinders; (2),

as a series of tubes connected by monofilament screens; and (3), as a series

of tubes with mylar constrictors set in between (i.e., baffles of rigid mylar

with openings half the internal diameter of the glass segments). The five

chamber types are shown in Fig. 3. The current passing through the

chambers was recorded to monitor conductivity changes in the solution.

Also, photographic records of the protein focusing were obtained since

"red" (Hemoglobin) and "blue" (Albumin) stained species were chosen as

the compounds for separation.

Plots of normalized current versus time follow in Figs. 4-9. The

experimental results indicate that the columns partitioned by monofilament

screens perform best. With monofilament screens the current decreases

steadily as the charged species reach their pIs, and the final current is about

one tenth of the initial value. The columns with mylar baffles also

exhibited focusing that occurred steadily and completely. However,

columns that did not contain partitions displayed a quite different behavior:

a sudden increase in current followed an initial decline, and the final
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current measured close to the initial value. The same occurred when anti-

electroosmosis coatings were present. Since the current increases were not

synchronized for these columns (Figs. 8 and 9), an external disturbance

such as a sudden acceleration of the Shuttle does not explain the data.

Rather the onset of electrically-driven convection within the separation

chamber, causing mixing of the components, seems to be the most plausible

explanation for the current increases.

Although the chambers with baffles or screens performed well, the

fluid velocity observed in the unsegmented chambers was ca. 1 cm/min.,

much too strong to be attributed solely to electroosmosis. Thus, the

current increases must have involved another kind of electrically-driven

fluid motion, which Rhodes et. al. [5] subsequently deduced must be

electrohydrodynamic in nature.

Another noteworthy observation was that once convection ensued, it

continued throughout the experiment; a more intuitive, cyclic behavior of

focusing-mixing-refocusing did not occur.

Once all elements from the STS-11 experiments and their post-flight

analysis were put together, a new set of experiments was devised and flown

on STS-26. The STS-26 experiments were aimed at verifying the STS-11

results, and at defining the relative magnitude of electroosmotic (EO) and

electrohydrodynamic (EHD) effects. EO is a wall effect (proportional to

the surface area of the IEF wall) that is proportional to the magnitude of

the applied field. On the other hand, EHD is a bulk effect (proportional to

the volume of the column), and it is proportional to the square of the

magnitude of the applied field. Thus, varying the surface to volume ratio



19

of the IEF chamber at constant field strength varies the relative strength of

the two flows. The chamber configurations tested on STS-26 are shown in

Fig. 10. Note that cylindrical chambers were included to repeat the STS-

11 experiments.

The experimental data from STS-26 are summarized in Figs. 11-16.

The extent of the focusing, the time of first observable convection, and the

strength of flow were comparable to the STS-11 observations for the

cylindrical chambers. Screens and a larger surface to volume ratio

improved the focusing performance of the columns, implying that EHD is

the principal cause of the STS-11 current increases. Moreover, the

performance of the rectangular cells showed a surface to volume ratio

dependence.

Simulation Results

The simulation package developed at the CSS was used to estimate the

magnitude of the conductivity gradients that developed during the STS-11

and STS-26 flight experiments. Refer to Table 2a for data used in the

simulation.

The evolution of conductivity profile obtained is depicted in Fig. 17,

and the final concentration profile in Fig. 18. The results obtained show

evidence of numerical instabilities in the computer code and the simulation

failed before reaching steady-state. Problems arise in the simulation

because of the steep pH gradients that develop. Also, the complexity of the

separation of a five component mixture adds to the numerical difficulties.

In order to obtain a better estimate of the conductivity profile, it was
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Table 2a

Computer Simulation Data for Flight Experiments on STS-11

General Values

Colunm length

Segmentation

Current density,

4.5 cm

100 segments

336.7 A/m 2.

pKa and Mobility Values

Component pKal pKa2

Mobility x 108

[m2/Vs]

Conc. x 103

[M]

Arginine

Lysisl-Aspartate

p-ABA

Hemoglobin

Albumin

9.04 12.48 2.71

4.1 7.7 2

2.41 4.85 3.28

8.0

10.0

6.0

0.0382

0.0110

* This implies a constant voltage of 75.0 V.



28

r_

t9

.wW
,i,1

°1-,_

lel

0.05

0.04

0.03

0.02

0.01

0

t=O

t=6

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Column length, z (m)

0.04
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necessary to re-run the simulation under conditions of reduced voltage.

Furthermore, because small amounts of protein do not significantly alter

the conductivity profile, the revised simulation was done for a three

ampholyte solution (sans proteins). Input data for the revised simulation

are given in Table 2b and the results are shown in Figs. 19-23. The

evolution of the conductivity profile is depicted in Figs. 19 and 20. Here

the rate of focusing of the components is slower than in the flight

experiments because of the smaller current used. Notice that it is possible

to distinguish the migrating zones at the different stages of the process.

More importantly, recognize that at some time between 3 and 4 minutes

into the simulation, a large conductivity gradient develops as the pure

Lysil-Aspartate zone appears. These localized conductivity changes are

accompanied by free charge accumulations, and it is at this stage that the

conductivity gradients are postulated to favor the onset of EHD. The

magnitude of the normalized conductivity gradient, Ver/er, is greater than

100 m-1 as shown in Fig. 21. An estimate of the minimum conductivity

gradient required to yield flow strengths of the order of those observed in

the flight experiments is Verier = 3 m -1 (cf. Appendix 1). The simulations

clearly show that, if the IEF solution were to remain quiescent, values for

Ver/er far in excess of 3 would develop (cf. Fig. 21). Thus, the IEF process

proceeds in such a way that the requisite conditions are manifested for

strong EHD floor. In Chapter 2, therefore, we take up the question of the

onset of EHD convection in liquids that contain appreciable conductivity

gradients. Note for completeness the steady-state pH, conductivity and

concentration profiles are shown in Figs. 22 and 23.
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Table 2b

Computer Simulation Data for Flight Experiments on STS-11

General Values

Column length

Segmentation

Current densit:¢

1.0 cm

200 segments

20 A/m 2.

pKa and Mobility Values

Component pKal pKa2

Mobility x 108

[m2/Vs]

Conc. x 103

[M]

Arginine 9.04 12.48 2.71 8.0

Lysisl-Aspartate 4.1 7.7 2 10.0

19-ABA 2.41 4.85 3.28 6.0

* This implies a constant voltage of 11.53 V.
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CHAPTER 2+ : ELECTROHYDRODYNAMIC INSTABILITY IN

A THIN FLUID LAYER WITH AN

ELECTRICAL CONDUCTIVITY GRADIENT

Introduction

Electrohydrodynamic motion is known to occur in liquids where spatial gradients in the

electrical properties are present. Classical examples of these flows are found in systems

with step-changes in the electrical properties, such as those at the boundary between

immiscible phases. Taylor and McEwan I analyzed the stability of a horizontal interface

between two superposed liquids, and Michael and O'Neill 2 investigated the stability of a

non-conducting layer sandwiched horizontally between two conducting fluids, in a vertical

electric field. These studies show that, without the stabilizing effect of interfacial tension,

the quiescent fluid arrangement is disrupted. Indeed, in a series of experiments on miscible

laminar jets, Rhodes, et al. 3 demonstrated that, unimpeded by the restoring influence of

interfacial tension, electrohydrodynamic stresses flatten cylindrical jets into ribbons. Still

more examples of flows driven by interfacial electric stresses are reviewed by Melcher and

Taylor 4.

Electrohydrodynamic motion has also been studied in systems where the spatial

variations in the electrical properties are far less dramatic. Turnbull and Melcher 5 examined

the stability of a perfectly insulating fluid layer in the presence of thermally-induced

gradients in density, dielectric constant and viscosity. Variations in the dielectric constant

give rise to dielectrophoretic body forces on the fluid and free charge accumulates in the

bulk. It was shown that if a dc electric field is applied to the (quiescent) fluid layer,

t Extensive excerpts of this chapter have been submitted in June 1994 to Physics of Fluids for publication.
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electrohydrodynamic instability sets in, provided that the thermal diffusion time is long

compared with the charge relaxation time. Melcher and Firebaugh 6 studied fluid motion in

semi-conducting liquids with thermally-induced conductivity gradients. They showed that,

subject to a potential wave that travels orthogonal to the temperature gradient, the liquid

flows anti-parallel to the conductivity gradient.

Here we consider the onset of electrohydrodynamic motion in a layer of liquid

across which there is a continuous variation in the electrical conductivity; in contrast to

Melcher and Firebaugh 6, we are concerned with conductivity variations associated with

gradients in the concentration of charge-carrying solutes. A linear stability analysis is

performed on the quiescent base state that exists when the conductivity varies linearly with

position and there is an electric field applied across the layer of liquid. The conditions for

marginal stability are determined, and the analysis shows that the relevant dimensionless

groups are: Ra e, an electric Rayleigh number; Aa/a o , the relative conductivity increment;

"r, the ratio of viscous to charge relaxation times; and a, the transverse wave number of

the disturbance. Numerical calculations show that, for a given relative conductivity

increment, the fluid layer becomes unstable when the electric Rayleigh number exceeds a

certain value; the critical values for Ra e and _x depend solely on A_/cr 0 in the limit

"r---) oo, which are the conditions for ohmic, aqueous systems.

The balance laws include the effects of diffusive processes associated with the

conductivity profile and, so, the analysis differs from those of Hoburg and Melcher 7 and

Hoburg 8 for the stability of fluid layers with colinear field and conductivity gradients. In

their analyses, the conductivity gradients developed (quiescently) due to the diffusion of

charge-carrying solutes, but these diffusive processes were then omitted from the equations

governing the stability of the fluid layer. The rationale for such an approximation is that the

time scale for diffusion of ionic solutes is typically quite long compared to the viscous
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responsetime, i.e. Koef/v << 1, where Keef is an effective diffusivity for the conductivity

[cf. Eq. (12)] and v is the kinematic viscosity of the liquid.

In the present context, however, the electrical conductivity gradients are large.

Thus, diffusive processes are important in spite of the fact that Kerr�v<< 1. More

specifically, diffusion of the ionic solutes tends to stabilizes the layer against the onset

electrohydrodynamic motion. To see this, consider the fluid layer depicted in Fig. 1,

where the electric field is directed parallel to the conductivity gradient. If a parcel of fluid

within the layer is displaced upward, it moves to a region in which, locally, the

conductivity is higher and the electric field is lower. It can be shown 9 that a low

conductivity parcel surrounded by higher conductivity fluid will tend to migrate toward

regions of lower field strengths. Such migration is driven by the gradient in the electric

field and is referred to here as dielectrophoretic, though the effects are due to variations in

the conductivity and not the dielectric constant of the medium. These dielectrophoretic

effects favor continued upward movement of the fluid parcel. On the other hand, diffusive

transport of charge-carrying solutes tends to eliminate the conductivity differences between

the upwardly directed fluid parcel and its surroundings. If this diffusive transport is

comparatively rapid, the upward motion of the parcel is arrested because the

dielectrophoretic forces vanish with the conductivity difference. Note the fluid viscosity

also tends to resist continued motion of the parcel. Depending on the relative strengths of

these competing effects, which are embodied in Ra e , the displaced fluid parcel may or may

not continue upward--and this distinguishes unstable from stable base states. If Keff/v is

set to zero, as was done by Hoburg and Melcher 7 and Hoburg, 8 the stabilizing influence of

the diffusive processes is not captured and the fluid layer is made linearly unstable by the

imposition of the external field. Such a result is analogous to what one would expect from

the classical Rayleigh-Benard problem if, in writing the thermal energy balance for the

perturbation variables, one were to consider the fluid to have zero thermal conductivity.
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Interestin thepresentproblemstemsfrom electrically-drivenconvectionobserved

in space-flightexperimentson isoelectricfocusing1°,aseparationprocessusedto isolate

and purify biological materials11 Experimental measurementsand numerical

simulationsl0-12showthat appreciableconductivity gradientsdevelopduring isoelectric

focusing(IEF), and it hasbeenpostulatedthat thesegradientsprecipitate the observed

flows3'10. Theconditionsleadingto theonsetof motion in IEF areof concernbecause

convectiondisruptstheseparationprocess;the linearstabilityanalysisis formulatedhereso

asto describeconditionsthat giveriseto suchdeleteriousconvectionin initially quiescent

fluid layers.

The presentationis organizedasfollows. First, thebalancelaws that governthe

electrohydrodynamicsof thefluid layerarepresented,andthen,aftera brief scaleanalysis,

theyareplacedin dimensionlessform. Next, a linearstability analysisis performed;the

quiescentbasestateis perturbedslightly, andtheperturbationsareexamined.Finally the

resultsof theanalysisarediscussedandconcludingremarksaremade.

Balance Laws

Theelectricalforceactingon ionicsolutesis transferredto thesolventthroughcollisionsat

themolecularlevel. Thefreechargesindividually transfertheirmomentumto thesolvent,

sotheNavier-Stokesequations,whichgovernthefluid motion,mustbemodified to read

c)v .Vv| -Vp+ +re,D --_ + V J = /./V 2V
(1)

where fe is the electrical force on the solvent per unit volume. Provided that the electric

displacement D and the electric field E are co-linear, fe can be expressed in terms of the

Maxwell stress tensor 13,14, viz.
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fe =V-T,

where for an incompressible linear dielectric,

T= ED-_e(D.D)I.

Since D = eE and pf = V. D,

(2)

(3)

r e =pfE-I(E.E)Ve. (4)

The first term on the right hand side of Eq. (4) is the (coulombic) electrical body force

caused by the action of the electric field on pf, the free charge density in solution. The

second term accounts for electric forces due to gradients of the dielectric constant e. When

Eq. (4) is combined with Eq. (1), the momentum balance becomes

P--_tDv= -Vp +pfE- I(E •E)Ve +¢tV2v, (5)

with V. v = 0. (6)

Analysis of Eq. (5) is often difficult because, according to Maxwell's equations, the

electric field is coupled to the free charge density pf. Moreover, the free charge density is

influenced by convection, so one may not generally specify pf and E independently of v.

As long as the electrical current density Jf is modest, E is quasi-static, so that

V xE= 0 (7)

and
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V. (eE) = pf. (8)

This latter relation is Gauss' law. Conservation of cfiarge requires

_r____Lf+ V-Jf = 0. (9)
Ot

For ohmic conductors the current density is given by 13'14

Jf = crE+v pf , (10)

where cr is the electrical conductivity and the second term on the right hand side represents

convection of free charge. Combining Eqs. (9) and (10) yields

DP---L= Vcr. E+ o-V .E, (11)
Dt

since V- v = 0.

Because the solution is an ionic conductor, the conductivity depends on the local

ion concentration. As a result, the conductivity may vary with position and time.

Melcher 13'14 has shown that the evolution of the conductivity profile is satisfactorily

described by

Da
= KeffV2a, (12)

Dt
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where Kef f represents an effective diffusivity that arises due to Brownian motion of the

ions. Though Eq. (12) appears to be a balance on a physical property it should be

recognized that, in ionic conductors the conductivity varies locally with the concentration of

charge-carrying solutes. Equation (12) holds 14 provided that the local charge

accumulations relax rapidly compared to the time necessary for momentum transfer

(viscous relaxation time) and the time required for ion electro-migration, viz.

e d d 2 6 2
-- <<-- << -- and --
GO toe o v cokBT

where co is a characteristic mobility of the charge-carrying solutes and kBT is the

Boltzmann temperature.

Scale Analysis

As an IEF experiment proceeds, concentration, pH and conductivity gradients develop

along the axis of the imposed electric field. Simulations show 11,12,15 that, if the process

proceeds without convection, the local conductivity can vary by more than an order of

magnitude over a length of lmm. The diameter of a cylindrical IEF separation chamber is

roughly lcm and the chamber is several cm long, so the axial distance over which the

conductivity gradients occur is thin compared to radial and axial dimensions of the

chamber, and the region of variation is distant from either electrode I 1,12,15

For the situation depicted in Fig. 1, the conductivity profile _* (z*) varies linearly

across the domain 0 < z* < d 16. It can be readily seen that such a conductivity profile

satisfies the conditions for a steady and quiescent base state. If _* is expressed as

_*(z*) = % + era - or°z* : % + Act z*, (13)
d d
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it follows that

(14)

and according to Eq. (12) the conductivity profile is steady.

The base state solution associated with Eq. (13) is:

(15)

1 1 •

fi*(Z*)=2"e/I+A_(rO dZ*) 2 Eg + pO ;

(16)

--* * 0 EO
pf (Z) = --E

(Acrz*) 2do'od

(17)

v (z)=o. (18)

Here P0 is the ambient pressure, E 0 is the electric field strength at the lower boundary in

the base state (from Eq. (15)) and E0o"0 = J0, i.e., there is a constant current density Jo

across the fluid layer in the base state.

The base-state solution suggests the following reference scales, which are used to

place the balance laws in dimensionless form: free charge density, eEoAcr/dcro; electric
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field, E0; and length, d. Hereafter, o. denotes the dimensionless conductivity, i.e.

o'-=(c¢- o.o)IAo..

The dimensionless momentum balance reads

D____v= -Vp + 1 V2 v + Pf E, (19)
Dt _/ Gr e

where the variables are now in scaled form. A balance of the inertial and electrical effects

requires that the velocity scale be 4eE_Aa/po.o, and the appropriate stress scale is

eE2Acr/o.o; the time scale is 4dZpcro/eE2Acr. The dimensionless group that appears in

Eq. (19) is defined by

d 2 eEg Ao.

Gre v 2 p GO
(20)

and can be thought of as an electric Grashof number, since Gr e is a measure of the relative

strength of electrical body forces and viscous effects. The inertial scaling chosen here is

appropriate when Gr e is O(1) or more.

The governing equation for the evolution of the electrical conductivity becomes

Do" 1__ V2o", (21)
Dt - Sce aj_ e

if an electric Schmidt number is defined as

V

Sc e =- geff
(22)
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Here Sc e is roughly 10 3 - 10 6, since Kef f ranges from 10 -9 - 10 -12 m2/s.

The conservation of charge relation transforms to

Dpf_ 1 d20"o 1+ o" +E Vo"

Dt _ ve _ f " '
(23)

where at_= d2ao/Ve represents the viscous relaxation time of the liquid normalized to

e/a o, the charge relaxation time in a liquid of conductivity cro and dielectric constant e.

For electrolytic buffer solutions o"0 = 10 -2 S/m and e = 10 .9 C/(m × V), so d2_o/V£ is

O(108) when d = 10-3m and v = lO-6m2/s.

Gauss' law in dimensionless form is

Acy
V. E = -- pf. (24)

O-0

Because the electric field is irrotational, the electric potential can be introduced, viz.

E = -v¢, (25)

and then Eq. (23) becomes

(26)

Similarly, substituting Eqs. (24) and (25) into Eq. (19) yields
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Dv 1 V2v + o-0 V2
-_=-Vp+ iGr e Ao.( _0) VO.

(27)

Equations (26) and (27), along with Eqs. (6) and (21), are the balance laws used to

describe the dynamic behavior of the system whose base state is depicted in Fig. 1. In the

next section, a linear stability analysis is performed on this base state. Small perturbations

are introduced to the system and their evolution is analyzed to determine if the disturbances

grow or decay with time.

Linear Stability Analysis

The base-state solution in dimensionless form is:

_(z) : z ; (28)

E(z) = 1 . (29)
Aty '

l+--z
tr0

_(z)= 1 cr I-Po; (30)

l+--z
tY 0

I
Pf( z)= 2; (31)

('+A_rzlcr° J

V(z)=0 (32)
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Note that overbars indicate the base-state variables.

To carry out a linear stability analysis of the base state, the following perturbation

variables are introduced 17-19:

v(x,t) = v'(x,t)= u'(x,t) i x + v'(x,t) iy + w'(x,t) i z ; (33)

o-(x,t)= _(z) + cr'(x,t) ; (34)

0(x,t) -- _(z) + ¢'(x,t) ; (35)

p(x,t)=p(z)+p'(x,t) ; (36)

where the prime denotes the perturbation variables, and

Ao- t, o'o J
(37)

Formal substitution of Eqs. (33)-(37) into the balance laws yields

o-0 iz
_iGre A_<[ dz

(38)

c7o-_.____'+ w' d_ _ 1 V2cr,, (39)
o3t dz Sc e G_w_e

c7 V2 , ---_w = 1+ +
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AGI d2-_ G'GOk dz2 d-_ O(/)' d-_ 0o"]}
, + -t , (40)

de Oz dz o3z

and V. v' = 0 , (41)

upon linearization. The pressure and the x and y components of the velocity are eliminated

from the problem by taking the curl of the momentum balance and making use of

continuity. The resulting expression is

with

/a 1 / d_ ,t3_5) _ v2 V2w'- a0 aoTzz Act dz 3
(42)

0_2 c_2

V_- ax2 + &---;.

Equations (39), (40) and (42) are a coupled set of partial differential equations and the

unknowns to be determined are: w'(x,t), the perturbation in the z-component of the

velocity; qY(x, t), the perturbation in the electric potential; and ry'(x,t), the perturbation in

the conductivity.

Equations (39), (40) and (42) are linear and symmetric in x and y, and, so, are

amenable to a normal modes analysis. Accordingly the solutions for the perturbation

variables are assumed to have the form

w'(x,t)] [w'(z)]

_i(x,t)_=l_i(z)_f(x,Y) est "
cr (x,/)J [6" (z)J

(43)
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There are solutions of similar form for p'(x,t), u'(x,t), v'(x,t) and E'(x,t). Formal

substitution of Eq. (43) into Eqs. (39), (40) and (42) yields

a 1 )( d_, , s,o_t Sce Gaf-G_eV2 _pfeSt)=-'---f-{w'feaz" )'
(45)

"t" 1+_o"Ao'_ V2 _,feSt + _v_feSt) =
frO dz-'" '

"t Act j d_
)qJ^ stC4 e l (°'je " dz

(46)

Based on Eq. (45), a form of the disturbances in the x and y directions can be

determined 19, viz.

f(x, y) = e i(%x +a,y)

with 0_2 2 2
= O_x + O_y .

Equations (44)-(46) then become,

l_._(D 2 )/(D 2 - a2)lb, :_0¢2 (D 2 - _2)_, + (47)Ary dz Act dz 3 '
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Dm w

s Sce G_ e D2-a 2 _r' dz
(48)

(49)

From the base state solutions,

d_

&

/ /3Aa
l+--z

cro

Substitution of the above relations into Eqs. (47)-(49) yields

1 (D2 _¢2))(D2_6¢2)_,=a2ry 0 1

_2a2 Ao- 1

( /3Act
or° l+--z

O"o

(v_-,_)_,

(50)

( 1 )1s Sce G._e(D2-ot 2 _r'=-_v',
(51)
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+--z D2__2._,___ , =
oo _.°oJ[,+,,<,1_"_"<_oJ

"t- Ao-
Aer 1 _-" + D_'- 1 DS"

l°'° l+-- A° z 1 +--z

_o ,7 °o

(52)

The above set of equations, Eqs. (50)-(52), is a coupled system of ordinary

differential equations in z; two equations of the set have coefficients that vary with z. The

set of ODEs is solved with the following choice of boundary conditions: the electric field,

velocity and conductivity are fixed at their base-state values on the upper and lower

boundaries, i.e. d()'/dz = ¢v" = _r" = 0 at z = 0 and 1, and the boundaries are either stress-

free, i.e. d2Cv'/dz 2= O, or rigid, i.e. d_'/dz =0. These boundary conditions are

consistent with the constant current imposed in the base state: ]*(z*) = J0 = E0°'0 for

0 < z* < d. Note that J' = 0 at z = 0 and 1. The eigensolutions to Eqs. (50)-(52) may be

determined numerically for each wave number t_, but some insight into the stability

problem may be gained by manipulating the equations further.

First let "r --->oo, which is a reasonable approximation because the relaxation time of

the charge e/o" o is of O(108) times faster than the characteristic relaxation time of the

fluid. Then, for neutral stability (s - 0), Eqs. (50)-(52) read

1

1o2o21 '-2o
cr° 1+ z °'° l+tr0 J

(53)

1 1 _, (54)_<o_ro(_-_)_'= _ '
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[ Ao]( Ao1 + -- Z D 2 -- O_2 ' --

Cro a o

Aa 1 ^ ^ 1 |

ty' +DO' - D_'I "
°'° l+--z l+--z

GOa0 ,

(55)

Substituting Eq. (54) into (53) yields

SceGr e
-o D - - 2

3 (56)
-- AO"
cr° l+--z a° l+--z

a0 cr0

Notice Eqs. (55) and (56) can be solved for _" and q_' without reference to _'; the only

parameters that appear in these two equations are Act/o" o , SceGr e and t_. Moreover Eq.

(54) shows that in order for r?'_: 0, it must be that a'_ 0 . Thus the conditions for

marginal stability (with o_ finite and z_,,o) depend only on three parameters, viz.

Ao'/cr 0 , SceGr e and o_. This is confirmed by the numerical results shown in section VI.

The product SceGr e can be thought of as an electric Rayleigh number,

Rae-SceGre=d2eE2Acy/llKeff_o . If the characteristic velocity 4eE_Acr/crop is

denoted by u c, then one interpretation of Ra e is as follows: (eEZAa/ao)/(btu¢/d) is the

ratio of electrical to viscous stresses; and ucd/Kef f is a Peclet number that represents the

relative strength of convective and diffusive transport of the conductivity fluctuations. So

Ra e = g E2 AO"/O"0 ucd

/,tuc / d Keff
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is a parameter that weighs the destabilizing effects of the electrical stresses against the

stabilizing influence of viscosity, as well as the mechanisms that govern the evolution and

transport of conductivity perturbations: convection (destabilizing) and diffusion

(stabilizing).

Numerical Approach to the Neutral Stability Analysis

To generate the neutral stability curves for Eqs. (50)-(52), the conditions for which there

are eigensolutions to Eqs. (50)-(52) (with s = 0) were found by the following numerical

technique. Equations (50)-(52) were first re-cast as a set of eight first order ODEs in z.

The general numerical solution to the system of eight ODEs was constructed for specified

values of Sc e, Gr e, Act/or 0 and o_. This was done by solving the system of equations for

each of eight linearly independent sets of initial conditions (prescribed at the lower

boundary, z =0) and the integration was carried out using the IMSL Library routine

DIVPAG. If Yi denotes the ith linearly independent solution to the system of eight ODEs,

the general (numerical) solution to the system can be written as

8

y = _,ciYi,
i=1

where the c i are arbitrary constants. The general solution y must satisfy, for example, the

following set of conditions at the (stress-free) boundaries:
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dZ[z=O dz _=I

fv'(z = O) = _'(z = l) - O

b'(z :o) : 6-'(z: 1)= o (57)

_
dz: [_:o d__ [_:_:0.

The task of satisfying Eq. (57) consists, at least conceptually, of choosing the appropriate

values for the c i (i- 1,2 ..... 8). To determine these values, one must solve an 8 × 8

system of linear algebraic equations, which can be expressed in the form

[cilC 2
Ac=O, C=

The elements of the matrix #, depend on Yi(0) and Yi(1), the linearly independent

solutions evaluated at z = 0 and 1, respectively, as well as Sc e, Gr e, etc. Now the ODEs

and the initial conditions are a set of homogeneous equations. As such, solutions for

6'(z), 6'(z) and _'(z) that satisfy Eqs. (50)-(52) and Eq. (57) are generally trivial, i.e.

#.c=O _ c=O _y=O.

However for certain combinations of Sc e, Gr e, etc., nontrivial solutions do exist; these are

commonly known as the eigensolutions to the problem and they obtain when det A = O. A
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search of the parameter space was implemented to establish the conditions for which

detA = 0 ; this was done by varying Gre, while holding all other parameters fixed. The

conditions thus delineated are used to plot the neutral or marginal stability curves presented

in the following section.

Results and Discussion

Results for the neutral stability curves are shown in the figures and tables that follow. The

marginal stability curves for a fluid layer with Ao'/o- 0 = l0 and stress-free boundaries are

shown in Figs. 2 and 3. In Fig. 2, Gr e is plotted versus t_ at Sc e = 103, 104 and 105.

In Fig. 3, these data are re-plotted as Ra e versus c_, and the three curves collapse into one.

Thus, as indicated in section IV, the marginal stability curves associated with Eqs. (50)-

(52) depend on At:r/G 0 and SceGr e when _"--> oo. These results are also shown in Table

I, where marginal stability values of Ra e vs. tz are listed for Sc e = l03, 104 and 105;

Ra e values agree to four digits across a two decade variation in Sc e. For Aty/o" 0 = 10 and

stress-free boundaries, the critical Ra e is 1.504 × l04 and the critical wave number is 1.98.

When Ao'/o- 0 is increased, the minimum of the marginal stability curve shifts to

slightly higher wave numbers (Fig. 4). More importantly, the magnitude of the critical

Ra e increases with Ao'/o" 0. This seems counterintuitive inasmuch as the region of

stability widens as the conductivity increment of the base state increases. Recall, however,

that

Ra e _ eE2d 2 Act
]2Kef f O"0

So, even though the critical Ra e increases monotonically with Aft/o" 0 , the critical electric

field strength does not. Plots of 2; 2 - eEgde/l, tKeff versus ct are shown in Fig. 5; E 2 can

be thought of as the square of the dimensionless field strength or, alternatively, as the
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scaled electric energy density. Notice that the magnitude of the critical _2 goes through a

minimum as Ao'/cr 0 is increased. This again seems to contradict the notion that

sharpening the conductivity increment in the base state favors instability. However, it will

be seen that the widening of the stability region for Ao'/cr 0 > 20 is due to boundary effects.

The imposition of the electric field on the base state conductivity gradient induces

within the fluid layer a volume charge, the distribution of which is given by Eq. (31). The

base state field acts on the volume charge to produce a coulombic body force that is

proportional to E z dEz/dz. This electrical body force is opposed by the base state pressure

gradient. But, for reasons outlined in Section I, this balance of forces is not necessarily

stable. When a small fluid parcel is displaced upward (or downward) it is surrounded

locally by a fluid of higher (or lower) conductivity. Due to the conductivity differences, a

polarization charge, proportional to the local strength of the base state electric field E z , is

induced about the periphery of the parcel. This polarization charge develops

instantaneously compared to the response times of the fluid and the conductivity profile,

i.e.

e/o" 0 << d2/v and d2/Kae.

The local field gradient acts on the polarization charge much like it would on an induced

dipole, exerting a force that is proportional to EzdEz/dz. This force is similar to that

which gives rise to the dielectrophoresis of leaky dielectric drops and tends to perpetuate

the motion of the parcel in the direction of its original displacement 9. If the viscous

stresses can resist the motion of the parcel well enough for ionic diffusion to dissipate the

local conductivity differences, the motion of the parcel is arrested. If they cannot, the parcel

continues on upward (or downward) and instability ensues.
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In Fig. 6, the profile of E z dEz/dz is plotted for several values of Ao'/ty 0 . The

portion of fluid in which the (destabilizing) dielectrophoretic forces are appreciable is

proximal to the lower-conductivity boundary (z = 0) and becomes increasingly narrow as

Aty/o" 0 increases. Accordingly, at high values of At_/_ o , one would expect the lower

boundary to exert a strong stabilizing influence, especially in comparison to that of the

upper boundary.

Figures 7, 8 and 9 are plots of the marginal stability curves E 2 vs. c_ at

Ao'/ty 0 = 1000, 100 and 50, respectively. Results are shown for four kinds of boundary

conditions: (1), both boundaries rigid; (2), the upper boundary stress-free and the lower

one rigid; (3), the upper boundary rigid and the lower one stress-free; and, (4), both

boundaries stress-free. The effect of the conditions imposed at the upper boundary is

clearly secondary to that of the conditions imposed at the lower. This is evident in two

ways. First, the marginal stability curves of those cases that share a common boundary

condition at z = 0 are closest. Second, changing the boundary condition at z = 1 (e.g.

from stress-free to rigid) shifts the marginal stability curves by a factor of 2 or so in E 2,

while a change in the condition at z = 0 shifts the curves by as much as a factor of 100. It

would seem then that the minimum in the variation of Ec2ritwith Aa/a 0 (Fig. 10) is due to

the increasing influence of the lower-conductivity boundary as Ao'/o" 0 increases.

Comparison of the foregoing results with experimental observations are favorable

but far from definitive. Electrohydrodynamic instabilities were manifested in microgravity

IEF experiments l0 performed on aqueous electrolyte buffers at field strengths of

approximately 1.7kV/m and current densities of 17Aim 2 . Numerical simulations of the

IEF processes indicate that, were these IEF experiments to have proceed without the onset

of convection, conductivity variations exceeding an order of magnitude would occur over

distances of about lmm 11,12,15 Using the viscosity and dielectric constant of water,



6O

d = lmm, Kef f = 10 -I0 m2/s, and a conductivity cr0 = 10 -2 S/m, the results for stress-free

boundaries and Ao'/o" 0 = 10 give a critical field strength E0, crit = 0.4kV/m and a critical

current density J0, crit = 4A/m2" Thus, under experimental conditions for which the

predicted critical field strength (or, alternatively the critical current density) was exceeded,

instability was indeed observed 10.

Concluding Remarks

This analysis shows that electrically-driven convection can ensue in an initially quiescent

fluid layer with an electrical conductivity gradient. The fluid instability is due to

dielectrophoretic forces that stem from local electrical conductivity differences in the fluid.

If diffusive transport of charge-carrying solutes is sufficiently fast, the dielectrophoretic

forces vanish with the relaxation of conductivity differences and quiescence persists in the

layer. In this work, the diffusive relaxation of conductivity differences has been lumped

into a single parameter Kef f, which appears in a convective-diffusion balance on or.

The implications of the results are that, in order to maintain stability in the fluid

layer, the magnitude of the conductivity gradient and electric field must be controlled. The

magnitude of &or/or 0 dictates the magnitude of the critical field strength that can be

imposed across the layer before electrohydrodynamic instability ensues. Moreover, it is

shown that the conditions prescribed at the lower-conductivity boundary have a significant

effect on the stability of the fluid layer.
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Table I

Marginal Stability Values for Ra e versus a and Sc e at Act/or o = 10.

a Rae @ Sce = 103

1.0 25460

Ra e @ Sce = 104 Ra e @ S¢ e = 105

25460 25463

1.1 22512 22511 22508

1.2 20339 20339 20344

1.3 18721

1.4 17513

1.5 16618

1.6 15967

1.7 15515

1.8 15226

1.9 15077

2.0 15048

18721 18718

17513 17510

16617 16619

15968 15971

15514 15510

15226 15224

15076 15081

15O49 15O48

2.1 15128 15129

2.2 15308 15307

2.3 15579 15579

2.4 15939 15939

2.5 16385 16385

15125

15312

15576

15938

16389
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Z =d

Z =0

e* = ,y*(z*)

Fig. 1 An initially quiescent and steady fluid layer of infinite extent in the x and y

directions with a linear electrical conductivity gradient in the z direction.

Asterisks are affixed to the variables to indicate that they are in dimensional

form; cf. Eq. (13).
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Fig. 2 Neutral stability curves for stress-free boundary conditions; Aa/cr o = 10;

"r= 108. Legend: 1. Sc e = 103, Gre, crit = 15.04, acrit = 1.98; 2. Sc e = 104,

Gre. crit = 1.504, acrit = 1.98; 3. Sc e = 105, Gre, crit =0.1504, acrit = 1.98.
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Fig. 3 Neutral stability curves for stress-free boundary conditions; Ao'/cr 0 = 10;

r = 108. The critical Ra e and o: are 1.504 x 104 and 1.98 respectively.
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Fig. 4 Neutral stability curves for the stress-free boundary conditions; -r = 108.

Legend: 1. Ao'/o" 0 = 10, Rae, crit "- 1.504 x 104, O_crit = 1.98; 2. Act/or o = 20,

Rae, crit = 2.430 x 104, O_crit = 2.06; 3. Act/or 0 = 50, Rae, crit = 6.788 x 104,

_crit=2.16; 4, Acr/Cro=100, Rae, crit=l.766X105, O:crit=2.22; 5 .

Acr/cr 0 = 1000, Rae, crit = 7.407 x 106, O_crit = 2.34.
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Transverse wave number, o:

Fig. 5 Neutral stability curves for the stress-free boundary conditions; "r= 108.

Legend: 1. 6o"/o'0=10, E_rit=l. 505xl03, 0_crit=l.98; 2. AO'/O'0=20 ,

E2rit=l. 215×103, acrit=2.06; 3. AO'/CTo=50 , Ec2rit=l.358X103,

OCcrit=2.16; 4. Ao'/cr0=100 , Ec2rit=l. 766x103, _crit=2.22; 5 .

Aft/G o = 1000, Ec2rit = 7.407X103, O:crit =2.34.
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Fig. 6
The profile of E z dEz/dz across the liquid layer for several values of Ao'/o" 0

Legend: 1. Ao'/o'0 =10; 2. Ao'/O-o =20; 3. Ao'/o'0 =50; 4. Ao-/o'0 =100;

5. Ao'/o" o = 1000.
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Fig. 7 Neutral stability curves for 6dr/CTo = 1000 for the four kinds of boundary

conditions. Legend: 1. rigid-boundaries; 2. the upper boundary stress-free and

the lower one rigid; 3. the upper boundary rigid and the lower one stress-free;

4. stress-free boundaries. For all these curves r = 108.
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Fig. 8 Neutral stability curves for Acr/tr 0 = 100 for the four kinds of boundary

conditions. Legend: 1. rigid-boundaries; 2. the upper boundary stress-free and

the lower one rigid; 3. the upper boundary rigid and the lower one stress-free;

4. stress-free boundaries. For all these curves "r = 108.
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Fig. 9 Neutral stability curves for ,50"/o" 0 =50 for the four kinds of boundary

conditions. Legend: 1. rigid-boundaries; 2. the upper boundary stress-free and

the lower one rigid; 3. the upper boundary rigid and the lower one stress-free;

4. stress-free boundaries. For all these curves "r= l0 s.
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Fig. 10 The variation of Ec2t with Aty/cr o for stress-free boundaries.
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AN ESTIMATE OF THE CONDUCTIVITY GRADIENTS

REQUIRED TO PRODUCE THE CONVECTION OBSERVED

IN IEF SPACE-FLIGHT EXPERIMENTS

To obtain an estimate of the magnitude of the conductivity gradients needed

to yield the flow strengths observed during the (STS-11 and STS-26)

microgravity experiments, a scale analysis of the momentum balance is

performed as follows. The Reynolds number is a measure of the relative

magnitude of inertial and viscous effects, and it is defined as

Re inertial UClc UClc-- .... (1)

viscous /./UC// 2 _//_p
V

For the present analysis, the focusing chamber is assumed to have

cylindrical geometry, and from experimental results, the flows encountered

have a velocity on the order of 1 cm/min, in a capillary of 0.5 cm

diameter. The kinematic viscosity of the buffer solution is approximately

that of water at room temperature, lO-6m2s -_. Thus,

Re - (10-z m/rain)(5 x lO-3m)(-_min/s) = 0.8 - 1,
10-6 m2/ s

(2)

which indicates that the inertial and viscous effects are of comparable

magnitude.
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To asses the significance of the electrical effects, they are compared

to the viscous effects, since the momentum generated by electrical stresses

is transferred at the onset of motion by viscous action. From the Navier-

Stokes equations, a balance of the viscous and electrical terms requires

_Wv - Vp = 1E-EVe - psE (3)
2

where = is understood to mean that the terms are of similar magnitude.

Substituting Eqs. (8) and (11) from chapter 2 into (3) above, one finds

Since for IEF the gradient in the dielectric constant is negligible,

#Wv Vp v- = • e---E E. (5)

Also

v(_v. E)= Ve(V.E)+ _V(V.E) ---_V(V.E), (6)

which leaves

/.tV2v Vp [-_-v V(V.E) Vo" ]
- = • -e--.E E.

O"
(7)
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From Eq. (7), it follows that

V (y 2 Uc E2 z
e--E; -_--+_U_ E: (8/

or

Va U_ 1 eU c

# _ oilO" l; e_ _ " (9)

For the IEF experiments pcr/(eEc) 2 >> 1, so

Vcr (10 -3 kg/(m x s))(10 -2 m/min)(_ min/s) m_ 1

cr (80)(8.854xlO_,2C/(V×m))(1667V/m)2(5xlO_3m)2 --3 .
(10)

Equation (10) indicates that Vcr/cr need only be ca. 3 m-1 to produce flows

of strength 1 cm/min in the IEF flight experiments. The simulation results

shown n Fig. 21 of Chapter 1 indicate that gradients of this magnitude are

realizable in IEF.
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APPENDIX 2 : THE CHARGE CONSERVATION AND CONDUCTIVITY

EVOLUTION EQUATIONS

Conservation of Charge

In systems where conduction involves more than one charged species (e.g.

aqueous electrolytes), each of the charges is governed by a conservation

equation

_gp+ + V.(p±v + J+)=O, (1)
&

where the current density for a bipolar conductor is

J+ = b+_p!E ¥ K+_Vp+, (2)

Here be are the mobilities and K_+the diffusivities of the cation (+) and

anion (-). The net free charge density and conductivity are

pf=p+-p_ ; a=b+p+ +b_p_, (3)

and

cr + bTp f
p± = (4)

b+ +b_

Substitution of Eqs. (2) and (3) into Eq. (1) and introducing Gauss' law,

viz.


